Porting AVS/Express to the CRAY XT-4

e-Science AHM, 14 September 2010 Cardiff
George Leaver, Martin Turner
Research Computing Services
University of Manchester

Contents

- Data Driven: Fourth Paradigm
- HECToR
- AVS/Express
- Porting / development
- User Cases

Radiographs – Creating new “insights”

"Multiscale x-ray imaging facility for monitoring and modelling structural evolution in situ" project has created the multi-scale from macro to nano Henry Moseley X-Ray Imaging Facility, £2.5m, launched in June 2009.

Motivation

- In-place visualization on supercomputer
 - Dataset size, transfer, GPU limits (if present at all)
- Viz apps for
 - Materials Science
 - Life Sciences
- Port software
 - AVS/Express
HECToR
- Cray XT4 (Phase2a)
 - 5664 x quad-cores: 22,656 cores (AMD 2.3GHz Opteron)
 - 8Gb / quad-core socket: 45.3Tb
 - 24 dual-core 'login' nodes
 - UKRC funded, EPCC/NAG Ltd. operated
- Distributed memory
 - Message Passing Interface (MPI)
 - `MPI_Send()`, `MPI_Recv()`, `MPI_Bcast()`, ...
 - Launch n instances of MPI app
 - `aprun -n 512 mycode`
 - (2Gb per process)

NAG dCSE
- NAG Distributed CSE Projects
 - Funding to port software to HECToR
 - "Massive Remote Batch Visualizer"
 - Port a commercial viz code
 - 10 months DCSE
 - May 2009 – Feb 2010
 - MS1: Port / build components
 - MS2: Viz Networks
 - MS3: Parallel IO Module
 - MS4: Optimization
 - MS5: User base testing / results

AVS/Express
- Rapid visualization pipeline construction
 - Visual programming
 - Easy to build GUI system
- Extensive visualization tools
- User extensible (C/C++/fortran)
- Portability
 - V code description language

AVS/Express Editions
- Standard
 - Serial compute & rendering
 - Parallelize at user-module level
- Multipipe Edition: parallel rendering
 - MPI: express + mpnode render processes
- Parallel Edition: parallel modules
 - MPI: express + pstnode compute processes
- Distributed Data Renderer: parallel modules & rendering
 - MPI: express + pstnode + mpnode processes

AVS/Express Parallel Edition is productized using PST developed by JAEA
Distributed Data Renderer Edition

Currently all processes in MPI job

Express(GUI) on login node?
- HECToR: No MPI allowed

Express(GUI) on compute node?
- HECToR: No X11

Remove MPI?
- Two versions of code to maintain
- Rewrite all parallel modules

Replace Vendor MPI in Express
- Forward MPI calls from login to compute node

mpiexec -n 1 express : -n 4 pstnode : -n 4 mpunode
Forwarding MPI

- Replace Cray MPI in express
 - Fake MPI library (libxpmt) on login node
 - Proxy xnode on compute node calls Cray MPI (always rank 0)
 - Maintains mapping between XPMT and Cray MPI objects, types, requests etc.

 Mapping XPMT MPI to Cray MPI

- In express: all MPI types are now integers
 - `#include<xpmt_mpi.h>` gives `typedef int MPI_Datatype;
 typedef int MPI_Comm; ...

 `MPI_Comm comm = ...; MPI_Datatype datatype = ...;
 MPI_Send(buf, count, datatype, dest, tag, comm);`
 Packs all args and sends them with `MPI_SEND` token to proxy rank 0
 via socket

- In proxy: tables of Cray MPI types, indexed by above ints
 - Token receive / Function dispatch loop sees `MPI_SEND` token
 `xMPI_Send() {`
 `recv and unpack args (buf, count, comm etc)
 MPI_Comm craycomm = comm_table_lookup(comm);
 MPI_Send(buf, count, craycomm);` — Cray MPI function called
 `send flags/results back to express }

Optimize MPI communication in renderer

- Point-to-point -> Bcast
Other Developments 2

- Replace HP *Paracom* Image Compositor
 - No MPI communication in paracom
 - Requires dynamic linking (wasn't available on HECToR)
 - 2-3 Swap Compositing.
 - Yu, Wang, Ma: Massively parallel volume rendering using 2-3 swap image compositing. SC08.

User Cases

- Materials Science
 - Henry Moseley X-Ray Imaging Facility (EPSRC, NWDA, UoF)
 - CT scanning equipment (2k x 2k x 16bit x n slices)
 - Diamond JEEP Beamline I12 (~4k x 2k x n slices)
 - 50-100Gb volumes
 - Volume render (rgba=4xRaw data), isosurface (~2x10^9 triangles)
- 351Gb Palaeontological dataset (7150x7150x7369 bytes)
 - Volume render
 - 256 processes (memory requirements)
 - ~5 FPS
 - Request not to publish images at this time
Thanks to Drs Paul Mummery, Phil Manning, Bill Sellers

george.leaver@manchester.ac.uk
james.perrin@manchester.ac.uk
martin.turner@manchester.ac.uk
http://www.manchester.ac.uk/researchcomputing